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Abstract

This work addresses the problem of predicting the reliability due to fatigue of MDOF structures subjected to uncertain random loading. Uncertainties in loading characteristics as well as in structural and degradation models are taken into consideration. Degradation due to crack growth is considered based on Paris equation. The prediction of stress range which is involved in Paris equation is rationally approximated by statistical measures of the stress response such as second moments and probability density functions of the stress range of the response. The proposed fatigue prediction method is used in optimal design of structures formulated in a multi-objective context that allows the simultaneous minimization of the objectives related to the weight of the structure and the lifetime due to stochastic fatigue of the structure. The features of the proposed methodologies are illustrated using a multi-degree-of-freedom hierarchical system involving multidimensional degradation states and subjected to stationary random excitation. 

INTRODUCTION

In the design of any structure under stochastic dynamic load, the reliability under fatigue is one of the major design criteria for maintaining structural safety. The proposed formulation integrates developments in the stochastic response of structures  subjected  to random loading, degradation prediction models in structural
____________
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components and uncertainty propagation tools to predict the probability of failure due to fatigue. Moreover, it presents a multi-objective optimization method for the optimal design of structures based on minimizing the weight of the structure and maximizing fatigue lifetime.

Stochastic Response of structures

Consider a class of vibration-degradation models of the form 
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 be a function characterizing dependence of 
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 (e.g. fatigue crack size, amount of wear, etc.), 
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 is the nonlinear restoring force depending on 
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 is a location matrix that associates the stochastic loads 
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 to the DOFs of the structure.

In particular, model 
(1)

 includes the special class of multi DOF hierarchical system, shown in Figure 1, consisting of  GOTOBUTTON ZEqnNum459161  \* MERGEFORMAT  bodies with the 
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 bodies are connected by elastic plate elements which provide the stiffness 
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 to the system. It is assumed that in each plate element a fatigue crack develops perpendicular to the direction of the motion. The initial crack size of the plate element 
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 provided by each plate depends on the crack size 
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Figure 1. MDOF system with cracks

For a linear system 
(1)

, with  GOTOBUTTON ZEqnNum459161  \* MERGEFORMAT , where 
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 is the stiffness matrix of the structure, equation 
(1)

 can be written in the state space for  GOTOBUTTON ZEqnNum459161  \* MERGEFORMAT , where 
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 be the vector of axial stresses in the elastic plate elements, one can relate the axial stress vector to the response vector 
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 is given with respect to the covariance of the state vector 
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For the case of nonstationary white noise excitation vector 
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 is the time varying cross power spectral density of the nonstationary white noise input, the covariance matrix 
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 is given by a system of Lyapunov equations [1]. This formulation can also be extended for the case of filtered white-noise excitation that can be modeled as the output of a system of linear differential equations to white noise input. In this case, the state vector 
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 is augmented to include the states of the differential equations describing the non-white noise input. 

stochastic Fatigue lifetime prediction
The degradation rates 
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 are modeled via the “kinetic” crack growth rates which, using Paris equation, are given as [2]:
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where 
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 is a factor which accounts for the shape of the specimen and crack geometry, and 
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 is the stress range which is evaluated as a result of solving the vibration problem for 
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Characterization of the random stress range 
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 in (2)

 constitutes a crucial part of the analysis. Two approaches are followed in the present analysis. In the first approach the stress range is characterized by the mean range of the stress process which for stationary and Gaussian processes is shown to be given by [2]: 
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where 
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 is the spectral width parameter 
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The second approach is based on Dirlik’s [3] formula for the probability density function of the stress range 
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where 
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This formula can be interpreted as “empirical” or simulation – inspired extension of the Rayleigh distribution to not-narrow band processes.

Both approaches depend on the spectral moments 
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 and can be obtained by analyzing the governing equations of the response of the dynamical system. In the present work it is assumed that crack growth does not significantly affect the axial stiffness of the plate elements so that the stiffnesses remain constant, independent of the crack size. In this case, the equations for the covariance response of the state vector of the system are uncoupled from the crack growth or degradation equations (2)

.
For stationary response, the second moment 
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 to obtain:
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where 
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. The above derivation assumes that the geometry factor  GOTOBUTTON ZEqnNum661549  \* MERGEFORMAT  is independent of 
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The time of failure 
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 is computed as the time for which 
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Probability of failure DUE TO FATIGUE
The formulation given above is conditioned on the fact that the values of the structural the degradation model and loading parameters are known. Let 
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 denote these parameters which may include the stiffness, the damping and the mass properties of the structure, the loading characteristics, as well as the empirical constants in the Paris crack growth equations. These parameters may be uncertain. Herein, the uncertainty of the parameters is quantified by the joint pdf 
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. The effect of the uncertainties in the prediction of the failure probability and the optimal design of structures due to fatigue will be evaluated. It should be noted that, for simplicity, in the formulas developed, the conditioning on the values of the parameter set 
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 was not explicitly shown. From now on, this condition is introduced in the formulas. For example, the pdf 
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 and can be used to obtain the characteristics of failure, such as the mean and the variance of failure time, the probability of failure at a given time, etc, as follows.
For demonstration purposes, failure 
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where 
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 and  GOTOBUTTON ZEqnNum917964  \* MERGEFORMAT  is the value of the stress range (“design point” in reliability terminology) that can be calculated by equating the crack length with the critical crack length and solving the resulting equation with respect to 
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 is one dimensional and can be carried out efficiently using available numerical algorithms. (2)

 and the equation can be solved analytically. The integration in 
Alternatively, an estimate of safety of the structure can be given by the critical time of failure of the structure. This critical time of failure is given by equation 
(9)

 with  GOTOBUTTON ZEqnNum600382  \* MERGEFORMAT  replaced by 
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 for the critical crack size  GOTOBUTTON ZEqnNum600382  \* MERGEFORMAT . 
The probability of failure or the expected time of failure considering also the effect of parametric uncertainties can be obtained by the probability integral [4]
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where 
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FATIGUE-BASED design optimization

The objective of the design is to minimize the weight of the structure while maintaining safety due to fatigue. This requires simultaneous minimization of more than one objective functions. The design should account for modeling and loading uncertainties. These uncertainties have been incorporated in the parameter set 
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. The Normal Boundary Intersection method [5] is used to solve the multiobjective optimization problem and find the Pareto front and the Pareto optimal solutions. 
Applications

For the structure shown in Figure 1, the initial crack length is assumed to be equal to 
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 is chosen assuming that the system is classically damped at its initial non-degrading state. Specifically, the damping matrix 
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 is selected so that the values of the modal damping ratios are 5% for all contributing modes. A white noise base excitation is assumed with power spectral density equal to 1. 
First the probability of failure of a 
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 degrees of freedom system is calculated using the proposed methodology based on Dirlick’s formula 
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. The probability density functions for all axial stress ranges  GOTOBUTTON ZEqnNum917964  \* MERGEFORMAT  are shown in Figure 2a. Using these pdfs, the probabilities of failure for the first, second and third subsystems are calculated for a certain critical value of 
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, as shown in Figure 2b. It can be seen that for probability of failure of the system is controlled by the failure of the first subsystem since the time of failure for any probability level is smaller than the time of failure for the other two subsystems.
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Figure 2. (a) Probability density functions of the stress ranges 
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 at the three subsystems, (b) Probability of failure versus the time of failure for the three subsystems.
Design optimization of the structure shown in Figure 1 is performed for 
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, equal for all subsystems. The first approach is used for modeling the stress range 
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, the Pareto front is shown in Figure 3a in the objective space and the Pareto optimal solutions are shown in Figure 3b in the parameters space. It is observed that most important parameter for the optimal design of the system appears to be the first subsystem’s plate width 
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Figure 3. (a) Pareto front and (b) Pareto optimal solutions for N=2.
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Figure 4. (a) Pareto front and  (b) Pareto optimal solutions as a function of subsystem for N=10.
conclusions

A methodology was proposed for estimating the probability of failure due to fatigue of MDOF system subjected to random loading. The methodology was extended to the design optimization of structures using as objectives the total weight of the structure and safety indices due to fatigue. In the formulations, deterioration due to crack growth was considered based on Paris equation. Two approaches for approximating the stress range in crack growth equations were employed. Modeling and loading uncertainties were taken into consideration using available uncertainty propagation tools. The random fatigue-based reliability and design optimization methodologies were demonstrated using special cases of the formulation on a 
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 degrees of freedom hierarchical system. Results depicted the effects of the fatigue and the uncertainties on the design of these structures. 
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